LEED® Prep
Green Building Lessons for a Sustainable Future

Welcome and Content Overview

A U.S. Green Building Council® (USGBC®) Education Partner
Welcome!

This LEED® Prep: Green Building Lessons for a Sustainable Future course gives students a thorough understanding of green building principles and LEED requirements to prepare them for taking the LEED Green Associate™ Exam and becoming a LEED Green Associate professional. LEED, or Leadership in Energy & Environmental Design, is a green building certification program from the U.S. Green Building Council® (USGBC®).

As the field of green building undergoes explosive growth, this course helps prepare students to enter a workforce with sought-after skills and experience. And because LEED is a global green building rating system, students with LEED credentials have skills that are in demand internationally.

In this course, students delve into what sustainability means to them personally and to the built environment. With hands-on activities and group projects, students examine practical aspects of green building, such as net-zero energy, sustainably sourced materials, and healthy air quality; and they practice designing green building components, such as sustainable landscapes and efficient water systems. Whether students who take this course become LEED Green Associates or not, the course helps them develop a sustainability mindset, empowering them to improve the health of the planet one project at a time.

This program includes:

- 7 modules that are based upon the LEED rating system and the Task and Knowledge Domains from the LEED Green Associate Exam.
- 42 thorough and engaging lessons that explore concepts and strategies relevant to the LEED rating system, guiding students through the many facets of applying sustainable design to the built environment and preparing students for the LEED Green Associate Exam.
- LEED Green Associate Exam Preparation Bundle: Study Guide and Practice Tests from Green Building Education Services ($129.94 value), which can be used for supplementary reading and independent test preparation. LEED Prep teachers can also receive an additional 20% discount on any product listed on GBES.com by applying the coupon code GREENEDUCATION in the cart at checkout.
- First-year USGBC membership at no cost*, which includes discounted access to USGBC Resources such as the LEED Green Associate Exam and Green Classroom Professional (GCP) Certificate Program, LEED Core Concepts Guide, and Education@USGBC resources.

*Applies to new members; membership is $750/year after the first year
Contents in Brief

FACILITATOR’S GUIDE
This comprehensive guide outlines how you can use this program to confidently prepare your students to take the LEED Green Associate Exam.

MODULE 1:
Introduction to Sustainability and Building Design
Lesson 1.1: Eco-‘Systems’
Lesson 1.2: The Carbon Dilemma
Lesson 1.3: Feedback Loops
Lesson 1.4: Prioritizing High-Performance Solutions
Lesson 1.5: Toward Regenerative Design
Lesson 1.6: Integrative Process

MODULE 2:
Location, Transportation, and Sustainable Sites
Lesson 2.1: Building Together
Lesson 2.2: Greening Brownfields
Lesson 2.3: Greenscaping
Lesson 2.4: Managing Rainwater
Lesson 2.5: Curbing the Heat
Lesson 2.6: Integrating Transportation

MODULE 3:
Water Efficiency
Lesson 3.1: Water: A Limited Resource
Lesson 3.2: What Is Water Quality?
Lesson 3.3: Water Inside and Out
Lesson 3.4: Indoor Fixtures and Appliances
Lesson 3.5: Outdoor Overhaul
Lesson 3.6: Innovative Water Solutions

MODULE 4:
Energy and Atmosphere
Lesson 4.1: Envisioning Energy in Buildings
Lesson 4.2: Harvesting Free Energy
Lesson 4.3: Using Energy-Smart Designs
Lesson 4.4: Energy-Efficient Technologies
Lesson 4.5: Seeking Net Zero
Lesson 4.6: Keeping Track

MODULE 5:
Materials and Resources
Lesson 5.1: A Building’s Life Cycle
Lesson 5.2: Material Impacts
Lesson 5.3: Building with the Three Rs
Lesson 5.4: Sustainably Sourced Materials
Lesson 5.5: Occupancy Waste Management
Lesson 5.6: Building Deconstruction

MODULE 6:
Indoor Environmental Quality
Lesson 6.1: Healthy Buildings, Healthy Occupants
Lesson 6.2: Invisible Hazards
Lesson 6.3: Keep It Clean
Lesson 6.4: Daylighting
Lesson 6.5: Comfort Is Key
Lesson 6.6: The Ideal Indoor Environment

MODULE 7:
Innovation and Design Process
Lesson 7.1: The Importance of Place
Lesson 7.2: Whole Building Design
Lesson 7.3: Rating Green Buildings
Lesson 7.4: Managing a LEED® Project
Lesson 7.5: Becoming a LEED® Green Associate™
Lesson 7.6: The Future Is Green
Module 1: Introduction to Sustainability and Building Design

LESSON 1.1:
Eco-‘Systems’

In this lesson, students explore systems thinking and why it is useful. They consider a variety of systems in the world around them and discuss how systems often intersect and interrelate. Then they examine an ecosystem as a basic unit of nature that includes a variety of subsystems: a community of living organisms; nonliving structures; and biological, chemical, and physical processes. Next, students work in groups to create a lesson they can share with their peers about one specific natural system and how it sustains itself over time. Finally, students consider how what they’ve learned about sustainable natural systems might be applied to the development of human structures. This first module serves as a foundation for understanding key green building principles and LEED Green Associate Exam materials covered in future modules.

LESSON 1.2:
The Carbon Dilemma

In this lesson, students investigate the carbon cycle to learn the many ways it moves through Earth’s natural cycles. They play a game to simulate the carbon cycle before and after the Industrial Revolution. After the game, students discuss how our use of fossil fuels has impacted the global carbon cycle and contributed to the greenhouse effect and global climate change. Students explore the carbon dilemma, probing our reasons for using fossil fuels and strategies to lessen our dependence on them. This foundational knowledge helps prepare students for the LEED Green Associate Exam, Energy and Atmosphere Knowledge Domain.
Module 1: Introduction to Sustainability and Building Design

LESSON 1.3: Feedback Loops

In this lesson, students have another opportunity to practice systems thinking as they learn that feedback loops can help them pinpoint cause-and-effect relationships in a system. Students explore specific examples of feedback loops in natural and human systems and differentiate between positive feedback loops, which reinforce conditions, and negative feedback loops, which balance conditions. They consider examples of feedback loops in buildings and identify leverage points as places where a small change can influence a significantly larger change. Then students divide into groups and create skits to challenge one another to identify positive and negative feedback loops and consider potential leverage points that could lead to an increase in a building’s sustainability. This foundational knowledge helps prepare students for the LEED Green Associate Exam.

LESSON 1.4: Prioritizing High-Performance Solutions

This lesson gives students an opportunity to pull together the concepts they learned in Lessons 1.1–1.3. They work together to define sustainability and then begin analyzing how a variety of actions fall on a sustainable to unsustainable spectrum. They learn the concept of the “triple bottom line,” which considers the environment, society, and the economy. Next, students get an introduction to USGBC’s LEED Impact Categories and Credit Categories. They divide into teams, with each team investigating one of the six primary LEED Credit Categories and how applying this category to a building could make it more sustainable. Then groups share their findings with the class and discuss how green building can benefit the triple bottom line.
Module 1: Introduction to Sustainability and Building Design

LESSON 1.5: Toward Regenerative Design

In this lesson, students work with a partner to investigate the life cycle and environmental impact of a product, considering ways to make a product more sustainable at each stage in its life cycle. Then they consider ways that an entire system can be designed to “regenerate,” or restore, renew, or revitalize, its sources of water, energy, and materials to create a sustainable system. Finally, students work in teams to brainstorm strategies for implementing regenerative designs to create sustainable buildings. This foundational knowledge helps prepare students for the LEED Green Associate Exam, Materials and Resources Knowledge Domain.

LESSON 1.6: Integrative Process

In this lesson, students learn that in addition to systems thinking and life-cycle analysis, another important aspect of successful green building projects is an integrative process. This strategy prioritizes connections and communication among professionals and stakeholders throughout the entire life cycle of a project. The idea is that the more the people on the team understand the perspectives of the other people on the team, the better the project will be. Then students work as team members, experts, and stakeholders to evaluate a neighborhood plan and propose changes to make the plan more sustainable. This foundational knowledge helps prepare students for the LEED Green Associate Exam, Integrative Strategies Knowledge Domain.
Module 2: Location, Transportation and Sustainable Sites

LESSON 2.1: Building Together

In this lesson, students examine 10 guiding principles of smart growth and relate them to sustainability and the triple bottom line. Students then consider how they might apply principles of smart growth to their own community. They work in groups to choose a location within the community that is suitable for a new development and analyze, describe, and sketch how they could use the principles of smart growth to improve the property and beyond. This design becomes the basis for a Development Design Portfolio they continue to refine and expand throughout Module 2. This first lesson also lays the foundation for key principles of the LEED Green Associate Exam, Location and Transportation and Sustainable Sites Knowledge Domains.

LESSON 2.2: Greening Brownfields

In this lesson, students focus on key strategies related to the LEED Location and Transportation and Sustainable Sites Credit Categories. They explore what sorts of development locations to look for, which ones to avoid, and how applying strategies to protect and enhance the environment surrounding a building can transform degraded lands, or “brownfields,” into “greenfields.” They also look at numerous other ways to make a development one that enhances the community and surrounding environment. Then they rejoin their teams from Lesson 2.1 and update the Development Design Portfolio they began in that lesson to add key new strategies.

LESSON 2.3: Greenscaping

In this lesson, students evaluate strategies for creating sustainable landscapes by following cues from the local natural environment. They learn xeriscaping techniques; the value of planting native, locally adapted species; and the characteristics and benefits of wetlands. Then they work in groups to add effective landscapes to the Development Design Portfolio from previous lessons. Their goal is to minimize hardscapes, maximize biodiversity, and incorporate site-management strategies and conservation plans to create sustainable sites. This exercise prepares students for the Sustainable Sites Knowledge Domain of the LEED Green Associate Exam.
Module 2: Location, Transportation and Sustainable Sites

LESSON 2.4: Managing Rainwater

In this lesson, students complete a lab activity to compare the effects of rainwater runoff on natural and impervious surfaces. Then they investigate how poorly managed rainwater and acid precipitation can negatively impact infrastructure and the environment and how low-impact development strategies, in contrast, can facilitate the sustainable management of rainwater. Students then apply what they’ve learned to the smart-growth designs they began in previous lessons.

LESSON 2.5: Curbing the Heat

In this lesson, students explore the “heat island effect.” They begin by conducting an experiment to examine the heat absorption of different materials. Then they define the heat island effect and explore its impacts in developed areas in greater detail. They look at how green roofs and other green building techniques can reduce the heat island effect and make communities more sustainable. They also learn about evapotranspiration and propose strategies for promoting evapotranspiration on a property. Finally, students rejoin their groups from previous lessons to apply what they’ve learned to their evolving Development Design Portfolio.

LESSON 2.6: Integrating Transportation

In this lesson, students examine a variety of transportation options that can improve the sustainability of a development. Then student teams regroup to incorporate sustainable transportation options, such as accommodations for alternative transportation vehicles, carpooling programs, and bike lanes, into their smart-growth designs. The lesson helps motivate students to consider taking advantage of sustainable transportation options themselves as it gives them an in-depth understanding of the four credits related to transportation in the LEED Location and Transportation Credit Category.
Module 3: Water Efficiency

LESSON 3.1: Water: A Limited Resource

The purpose of this lesson is to help students understand why Earth is considered the “water planet” and then analyze how much of that water humans can actually use for life-sustaining purposes. Students explore the concept of water scarcity in both physical and economic terms. They also investigate three major categories of human water consumption: agricultural, industrial, and domestic. They explore global water-related issues and ways we can address those issues on a personal level and as a proponent of green building.

LESSON 3.2: What Is Water Quality?

In this lesson, students examine how the drinking water standards of the U.S. Environmental Protection Agency (EPA) provide guidance for assessing water quality. They evaluate sources and potential impacts of graywater and blackwater and consider social and environmental concerns related to poorly treated water. Students then conduct independent and group research and develop key discussion points on water quality standards and related concerns.

LESSON 3.3: Water Inside and Out

In this lesson, students evaluate a variety of ways water is used inside and outside a building and how these uses impact the balance of water in an ecosystem. They focus on the three categories for water usage listed in the LEED Green Associate Knowledge Domain for Water Efficiency: indoor water use, outdoor water use, and water performance management. They learn the LEED efficiency-first approach to water conservation and how baselines set by the U.S. Energy Policy Act of 1992 have improved water efficiency. Then they have an opportunity to act as LEED Green Associates by auditing school bathrooms and applying what they learned about baselines and full-time equivalencies to analyze and gain perspective on their findings.
Module 3: Water Efficiency

LESSON 3.4: Indoor Fixtures and Appliances
In this lesson, students explore innovations that reduce the gallons (liters) per flush and gallons (liters) per minute of indoor water fixtures and appliances. They evaluate ways that water is commonly wasted in buildings and propose strategies for reducing water consumption. Working in groups, students then research specific appliances and fixtures to determine why older models of water fixtures and appliances are often less efficient than newer models and to review innovations that make newer models more sustainable. Finally, students use their research findings and the data they gathered in Lesson 3.3 to make recommendations to school officials for ways to meet LEED Water Efficiency baseline standard prerequisites and credit requirements for indoor water use on campus.

LESSON 3.5: Outdoor Overhaul
In this lesson, students explore strategies for reducing outdoor water use. Then they evaluate how landscape design and irrigation systems contribute to inefficient water use at their school. Students integrate their understanding of water-wise landscape design, irrigation systems, water reclamation, and submetering to propose ways that school officials can meet LEED Water Efficiency standard prerequisites and credit requirements for outdoor water use reduction on campus. Students use the EPA WaterSense Water Budget Tool to calculate the reduction in outdoor water use from the baseline outdoor water use for their proposed landscape design.

LESSON 3.6: Innovative Water Solutions
In this lesson, students explore examples of actual water-use problems around the world that have been addressed with sustainable solutions. They investigate and discuss the specifics of each situation. Then students create an architectural sketch integrating solutions they’ve learned about in this module or their own innovations to design a sustainable solution for a given set of circumstances. As students explore different types of innovations for different regions of the world, they also remember the critical need to protect water resources for all.
Module 4: Energy and Atmosphere

LESSON 4.1: Envisioning Energy in Buildings

In this lesson, students examine how buildings commonly use energy, particularly to regulate temperature and provide electricity, and where this energy comes from. They tour their school building to examine different ways energy is used within the building. Then they research several impacts that using that energy has on the environment, including climate change, acid precipitation, and ozone depletion. Students form groups to create mini-lessons on five key areas of environmental impact and then teach their peers about the impact. Throughout the lesson, students examine how human behavior and green building can effectively reduce energy consumption in buildings and, thus, the use of fossil fuels.

LESSON 4.2: Harvesting Free Energy

In this lesson, students investigate how passive design strategies, such as the use of passive solar, thermal mass, daylighting, and natural ventilation, can be used in a building to harvest “free” energy and conserve energy. First, they learn how key strategies can be integrated in a heating and cooling system for all seasons. Then they view photographs of actual buildings to evaluate the effectiveness of their passive design. Students then apply what they learn by designing, building, and testing a model house that incorporates passive design strategies.

LESSON 4.3: Using Energy-Smart Designs

In this lesson, students look at how energy-smart building designs include a tight building envelope. Students learn that a building envelope includes the parts of a building that separate the interior from the exterior. They view thermal images to explore common weak spots in the building envelope, conduct research to learn about strategies for addressing those weak spots, and then revisit the thermal images to share those strategies. Students consolidate what they learn by creating an infographic and by analyzing a video of a net-zero LEED platinum building.
Module 4: Energy and Atmosphere

LESSON 4.4: Energy-Efficient Technologies

In this lesson, students examine technologies that can be used to minimize building energy needs for credits in the LEED Energy and Atmosphere Credit Category. Students play a card game to learn about energy-efficient technologies related to heating, ventilation, and air conditioning (HVAC) systems, lighting, and plug-in electrical uses. They also identify technologies and strategies that affect the efficiency of the entire building energy management system. They conduct research to explore in-depth how technologies, such as energy recovery ventilation systems, automatic sensors, smart-home technology, and the ENERGY STAR® Portfolio Manager®, make buildings more sustainable. This lesson heightens student awareness of how sustainable choices in technology can affect personal comfort in the built environment as well as reduce the building’s environmental impact.

LESSON 4.5: Seeking Net Zero

In this lesson, students explore the fact that many buildings today primarily use nonrenewable energy resources over renewable energy sources. Students examine various energy sources and make a case for the use of renewable energy as the primary source of power for the built environment. Students also examine case studies of net-zero and carbon-negative design practices in buildings and cities. Then they collaborate to design a net-zero building for the future.

LESSON 4.6: Keeping Track

In this lesson, students consider factors that can impact a building’s energy performance. They analyze energy-related problems that might occur and discuss ways to prevent and resolve those problems. Students then explore how the building commissioning process can help ensure that building projects are designed and executed to meet stated goals. They discuss the different tasks of a Commissioning Agent as a building is designed, built, and occupied. Finally, they consider what might motivate building occupants to adopt more energy-conservation practices, and they share their ideas in the form of an energy-conservation campaign for a hypothetical business.
Module 5: Materials and Resources

LESSON 5.1: A Building’s Life Cycle

In this lesson, students begin investigating the LEED Materials and Resources Credit Category by examining the building life cycle, from the acquisition of initial building materials to the end of the building’s existence. Students consider the impacts of materials and resources at each step of the building life cycle and propose ways to reduce their impacts. Then they diagram the building life cycle, modifying it to consider changes from recycling and adaptive reuse at the end of life. Next, students explore and share adaptive reuse case studies to learn about creative ways people are reinventing buildings. Finally, students begin a group project in which students select a building or building site and plan how they will minimize the impacts of materials at each stage of the building cycle for either a new development, a renovation, or an adaptive reuse project. They revisit their plans at the end of each lesson in this module to apply what they’ve learned to their evolving designs.

LESSON 5.2: Material Impacts

In this lesson, students evaluate the impacts of specific building materials throughout the material life cycle so they recognize how all the materials that form a building contribute to that building’s overall impact. During an observation hunt, they identify materials that make up key building components of the school. They determine whether a material is renewable, local, nontoxic, durable, biodegradable, reusable, or recyclable so they can recognize the characteristics of environmentally preferable building materials. They analyze the social, environmental, and economic impacts of the life cycle of a material they found during their observation hunt and propose ways, such as source reduction, to make the life cycle more sustainable. Finally, they apply what they have learned about material impacts to update the Sustainable Building Life Cycle Project, which they began in Lesson 5.1.
Module 5: Materials and Resources

LESSON 5.3: Building with the Three Rs
In this lesson, students examine building strategies that can reduce the impacts of materials during building construction. They determine ways to employ source reduction during design and construction and explore opportunities to use salvaged and recycled materials when building. This lesson cultivates skills students will need in a real-life work environment by having them apply their newfound knowledge to helping construction managers and architects find ways to reduce material impacts. It also encourages them to think creatively about how they can make buildings more sustainable as they develop an initial concept for a building product made of recycled materials. Finally, student groups continue to evolve their building life cycle project based on their growing understanding of the Materials and Resources Credit Category.

LESSON 5.4: Sustainably Sourced Materials
In this lesson, students consider how green builders can gain confidence that the sustainable materials they purchase are actually sustainable. They take a close look at materials for a specific part of a building, exploring the ingredients of those materials, where they come from, and how that impacts the sustainability of the materials. Students learn about a variety of environmental product declarations and third-party certifications that improve product transparency so green builders know what they are getting. Then they collaborate and conduct research to make recommendations for a sustainable purchasing program. The lesson ends with students returning to their Sustainable Building Life Cycle Project, which they began in Lesson 5.1, to add what they learned about sourcing reliable sustainable materials.
Module 5: Materials and Resources

LESSON 5.5: Occupancy Waste Management

In this lesson, students focus their study of the Materials and Resources Credit Category on waste produced during building occupancy and maintenance. They evaluate how waste produced by building occupants can be managed sustainably, using their school as an example. They identify waste streams in their classroom garbage and tour the school to find out about current waste production and management. Through interviews with stakeholder groups in the school community, they then investigate the main sources of trash in different areas of the school and how that waste is handled in sustainable or unsustainable ways. Then, they represent their stakeholders in teams that work to create a new waste management policy for the school that diverts as much waste as possible from the landfill through planned recycling, reuse, and composting. Finally, student groups continue to evolve their building life cycle projects based on their growing understanding of the Materials and Resources Credit Category.

LESSON 5.6: Building Deconstruction

In this lesson, students finish exploring strategies to reduce material impacts throughout the building life cycle. The lesson revisits how different approaches to a building’s end of life determine whether a building life cycle is linear or cyclical. They apply what they’ve learned throughout the module to include demolition waste in a construction and waste management plant that diverts waste from the landfill. In addition, they examine how deconstruction can greatly increase the materials that can be salvaged and recycled. Students compare various strategies to create a sustainability spectrum for the end-of-life building stage. The lesson ends with students returning to their Sustainable Building Life Cycle Projects, which they began in Lesson 5.1, to take their designs to the next level by including regenerative methods. This final effort captures the essence of the LEED Material Resources Impact Category of promoting regenerative life cycles.
Module 6: Indoor Environmental Quality

LESSON 6.1: Healthy Buildings, Healthy Occupants

This lesson introduces students to the major topics they will examine in depth later in this module. They begin by considering how the school environment affects them by noting the characteristics of rooms in which they feel the healthiest and most productive during the school day. This reflection helps introduce students to an important system goal in LEED, the Impact Category called Enhance Individual Human Health and Well-Being. Next, via a lively video, students learn about sick building syndrome. They play a matching game to link conditions, symptoms, causes, and possible solutions related to sick buildings. A presentation helps students establish a base from which to learn about the LEED Indoor Environmental Quality Credit Category by introducing categories of air quality, lighting, acoustics, and occupant comfort as key components. Finally, students review and share their analyses of case studies of actual healthy building projects to stimulate their interest in the strategies they will investigate in later lessons.

LESSON 6.2: Invisible Hazards

In this lesson, students explore specific health hazards caused by air pollutants within the built environment. Via a matching game, they identify common pollutants, such as mold, particulate matter, and carbon monoxide. Then, students focus on a specific pollutant to research its source and potential health impacts. A presentation helps students pull together what they’ve learned and the larger impact of these pollutants. To complete the lesson, students create posters to communicate how indoor air pollutants affect the health and well-being of occupants.
Module 6: Indoor Environmental Quality

LESSON 6.3: Keep It Clean

In this lesson, students take a closer look at how various construction techniques can influence indoor environmental quality. They identify building design, construction, and maintenance strategies that reduce indoor environmental hazards and promote a healthy indoor environment. Using the school as a case study, students evaluate potential air quality hazards and propose strategies for improving air quality throughout the school. Then they work together to design an elevator pitch to sell a solution to school administrators.

LESSON 6.4: Daylighting

In this lesson, students explore how daylighting and other lighting strategies used in buildings impact occupant comfort and energy use. Then students apply what they’ve learned by examining the lighting throughout the school building, identifying well-lit and poorly lit areas of the school. Working in pairs, students then conduct research to evaluate the benefits and challenges of daylighting as well as design strategies that increase daylighting. Finally, students create a design for a building that maximizes daylighting and other beneficial lighting technologies for ideal occupant comfort.
Module 6: Indoor Environmental Quality

LESSON 6.5:
Comfort Is Key

In this lesson, students examine building strategies—such as acoustic design, thermal design, air quality control, maintenance practices, and ergonomic furniture—that can increase occupant comfort, happiness, and productivity. They also investigate how occupant control over temperature and ventilation-regulation systems can improve the satisfaction and well-being of occupants. Then students conduct a school survey to gain a better understanding of occupant comfort and make recommendations for improving the indoor environmental quality of the school.

LESSON 6.6:
The Ideal Indoor Environment

In this lesson, students identify how components of indoor environmental quality (IEQ) work together to create an ideal environment for occupants. First they list all the key topics and vocabulary they’ve learned in this module; then they build a mind map to process those concepts and explore interconnections. Students then apply this consolidated learning by creating a sketch for a classroom that has all the major components of IEQ. Students present their designs and conduct peer-to-peer evaluations to provide other groups with feedback on design strengths and strategies for improvement. To conclude the module, students discuss the ideas of synergies and trade-offs and why understanding these concepts is essential for a green builder.
Module 7: Innovation and Design Process

LESSON 7.1: The Importance of Place

In this lesson, students assess the purpose and benefit of focusing on bioclimatic design to solve challenges posed by regional issues and to understand which LEED credits are emphasized in their region. To begin, students determine priorities for their local region and propose design strategies appropriate to addressing those priorities using the USGBC Regional Priority Credit database. Then, students work in groups to research the characteristics of regional climates in the United States as well as the related design considerations and solar potential. Finally, students consider what makes their homes, communities, and places unique, and they develop stories about a place of their choosing with the intent of inspiring classmates to better understand what makes their place special and worth protecting.

LESSON 7.2: Whole Building Design

In this lesson, students explore the foundational concepts of integrative, or “whole building,” design. They are each assigned a role to be part of an integrative team that will design a building for a university campus. They begin by conducting independent research to understand the scope and purpose of their designated roles. Then, via a fast-paced card game, they explore how various design strategies can be synergistic and benefit multiple LEED categories and credits. Finally, they participate in an eco-charrette to explore an array of perspectives as they begin designing their building. The charrette spans two sessions in this lesson and picks up again in the next lesson, giving students ample experience simulating an effective real-world building design process.
Module 7: Innovation and Design Process

LESSON 7.3: Rating Green Buildings

In Session 1, students discuss why effective green building relies upon third-party rating systems. Then they use the USGBC’s LEED Project Checklist to check the certification level they were able to achieve for the designs they created in Lesson 7.2. In Session 2, students research an array of Green Business Certification Inc. (GBCI) programs—such as PEER™, EDGE, SITES®, WELL™, Parksmart℠, and TRUE—as well as other popular rating systems, including BREEAM® and the Living Building Challenge. Then they learn more about the roles of USGBC and GBCI and important aspects of the LEED rating system. Finally, they review how Arc, a platform developed by GBCI, can help project managers keep track of their progress toward goals.

LESSON 7.4: Managing a LEED® Project

In this lesson, students learn a traditional architectural design process, the GBCI certification process, and key steps a LEED Green Associate/program manager would take to get from one to the other. Working in their eco-charrette teams from Lessons 7.2 and 7.3, students input details about their projects into a test version of the LEED Online system to get first-hand experience with the system. In this way, they learn how to navigate through the system, upload documentation, and search for LEED requirements and worksheets so they are prepared for the Green Associate Exam and ready to assist in the management of the LEED documentation and certification process.
Module 7: Innovation and Design Process

LESSON 7.5: Becoming a LEED® Green Associate™

In this lesson, students coordinate a panel discussion with a range of green building professionals who answer their questions and share information about their careers. Then students explore a green career they are interested in, identifying key steps needed to prepare for that career. Next, students spend some time preparing for the LEED Green Associate Exam, first by playing a game of LEED vocabulary bingo, then by reviewing logistics related to the exam, and finally by self-assessing their readiness for the exam and creating a study plan to help them prepare for and pass the exam.

LESSON 7.6: The Future Is Green

This module and this course end on an inspiring note as students think about the future of green building, watch a short video about one company that created an innovative corporate headquarters, and give their own campus building designs one final look to see how they might further transform them to be more innovative, more sustainable, and more closely linked to their classmates’ building designs. Students then share their innovative building designs with their classmates, contemplate together the future of green building, and take some time to reflect on the experiences and knowledge they gained throughout the course.
LEED Prep
Green Building Lessons for a Sustainable Future
by EcoRise Youth Innovations

For more information about the LEED Green Associate Exam, visit http://www.usgbc.org/credentials#ga.

Special thanks to the U.S. Green Building Council Education team for their guidance and support and to our panel of LEED experts for their careful reviews and additions, particularly:
Jenny Wiedower, USGBC K12 Education Manager, LEED Green Associate
Kay Kane, USGBC Instructional Design Specialist, LEED Green Associate
Marni Jade Evans, USGBC Green Building Specialist, LEED AP BD+C, LEED Fellow
Mariana Aristizábal Echeverri, LEED AP BD+C, Director LEED Projects, Instituto Thomas Jefferson
Charlie Cichetti, WELL AP, LEED AP BD+C, ID+C, O+M, ND, Homes; CEO, Green Building Education Services (GBES)
Alyson Laura, WELL AP, LEED AP BD+C, O+M, Sustainability Maven, Green Building Education Services (GBES)

Staff Credits
Gina LaMotte, Executive Director
Jenji Henson, Chief of Curriculum Development, Green Classroom Professional
Christina Miranda, Chief Designer
Tabitha Yeager, Writer and Classroom Pilot
Laura Fuller, Lead Designer
Javier Velázquez Amparán, Designer
Suzanne Noguere, Copyeditor
Nora Ankrum, Copyeditor
Richard Kincaid, CTE Advisor

2018 © EcoRise Youth Innovations

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

The information presented in this program is provided as-is and is subject to change without notice. All content in the program is believed to be accurate but presented without warranty of any kind, express or implied. EcoRise Youth Innovations assumes no responsibility or liability in connection with this material or its use by any individual or organization.

LEED®, LEED® Green Associate™, and USGBC® Education Partner™, and their related logos, are trademarks owned by the U.S. Green Building Council® and are used with permission.

EcoRise Youth Innovations is not affiliated with USGBC® or GBCI® and does not administer the LEED Green Associate® program. USGBC and GBCI do not endorse or recommend the products or services offered by EcoRise Youth Innovations.

Grateful acknowledgment is made throughout our program to the many photographers, writers, artists, and other contributors who granted us permission to reprint copyrighted material. We very much appreciate their contributions.

Cover Image: Unsplash.com: Oliver Wendel

Requests for permission should be directed to: info@ecorise.org